
1.

2.

3.

Android building blocks  - Part 1
Activities, Intents, Permissions, Lifecycle and 
Persistent Storage

Download the full app created in this guide:
https://drive.google.com/file/d/1leLw1Fo7aZfvgL-r2fjwEA_frEfvXS_h/view?
usp=sharing

Download the View Binding PDF Guide:
https://drive.google.com/file/d/1-o2TDRApSwzplOvXbrlafuAPaKkaf9lI/view?
usp=sharing

Each Android App consist of four components:

Activity  - this is the main android component. Each Activity 
represents a full screen. Nowadays we us the AndroidX 
AppCompatActivity which includes more advance features over the 
basic Activity which it inherits from. If we go deeper into the 
inheritance tree you will see that Activity also inherits from Context. 
The Context is an abstract class whose implementation is provided by 
the Android system when it is creating the Activity. Yes, the system 
creates the Activity and not us. The context allows us to interact with 
the system, it allows access to application level resources and classes. 
We will need it for each Android API class generation including 
creating other activities and other app components. 

Service  - Service is an app component designed to preform non-UI 
related operations. Like the Activity the Service also inherits from 
Context and it allows him to fully interact with the android system and 
so massive operations if needed. The fact that the Service doesn’t 
have UI is sometimes an advantage - think about playing music from 
the background when the user is out of our app UI and wants the 
music to continue even when he navigates to other apps. An android 
App has two states - foreground and idle. Once the app has a 
foreground activity or a foreground service it considered to be 
foreground and has unlimited working power. After they move to the 
background the app will move to idle state and all of its other service 
and background activities will be killed by the system.

Broadcast Receivers - Broadcast are transmissions that the Android 
system can send when events occur. For example when connecting an 
external device, when connecting to a bluetooth or to wi-fi, when a call 
or sms arrives or sent, when the battery changes, when the boot 
completes, when connecting to a power source, when turning on 



3.

4.

1.

airplane mode or even when turning the screen on and off. In short for 
every external Android OS event sends a special broadcast. The 
Broast Receiver is a component that we can register to receive these 
broadcasts and do something with them. For example, when we detect 
that the boot completed we can start a service which let the user 
know the current weather or checks messages on our server or much 
more. The Broadcast Receiver doesn’t inherit from the Context but 
receive a limited one by the system when the broadcast it was 
registered to is sent. This limited context doesn’t allow the receiver to 
do any long term operations but instead it will be finished by the 
system after 5 seconds if it didn’t finish before.

Content Provider - A Content provider is an app comment designed 
to provide data to other apps. All of the internal system database are 
arranged in a Sqlite databases and through the Content Resolver the 
system provides an interface for us to access their stored data like the 
address book, the content of the SD card, the calendar and other data 
stored locally on the phone.

Launching the app - order of events:

Everything starts in the Android Manifest xml file. In that file we set 
the app name, icon and other initial settings, the required device 
features and needed permissions but the most important thing, we  
declare the existence of all of our apps components and  their 
capabilities. When the user installs our app the Android system 
creates a single instance from each component defined in the 
Manifest in the JVM Class Loader and uses this instance when it needs 
to create the component at runtime.  It can do so either when the 
component is asked for explicitly by its name or when his declared 
capability is needed. This is the situation when the app launches: 
When the system detects a press on our app icon it sends the MAIN 
action to our package - the Activity which is registered to that action 
will be automatically created by the system. Please notice the 
exported attribute set to “true”. This means that this component can 
be created by the system when its registered action occur.



2.

3.

When The Android OS creates an instance of the designated Activity it 
Automatically calls its onCreate() Lifecycle event function. By 
overriding this function we get our first entry point to the activity 
creation. Please note that after  the super() call you can see the 
setContentView() function  - this function receives the id of the initial 
xml layout file and inflate (inflation is creating objects from the static 
xml list) all of its views and subviews and populate them on the 
screen.

After the initial layout has been created we can do additional 



3.
customizations like attaching listeners to buttons, play background 
music reading data from internal or external storage and populate a 
list with it and much more.

But since we use view binding we add this line to the app Gradle 

And our onCreate will look like this:

Intents

In the Android OS Intents is all we have :) 
Intent are the way to interact with components, they can create them, pass 
information to them and more. Note the activities usually doesn’t have 
constructors overloading, this is because we don’t use constructors calls to 
create them but rather pass an Intent to the system and let her create the 
implement the Context for them. Our first entry point to their creation is the 



lifecycle event function onCreate. When the system receives an Intent she is 
reading our intentions from it. Our intentions can be either Explicit where we 
are mentioning our desired Component by it’s name or Implicit where we 
mention our desired Action string and the system finds the component for us 
according to what they declare  - usually in the Manifest file. If more the one 
Component can answer that Action the system lets the user pick one and 
define it as default. The Implicit launch is the case in the app launch - the 
MainActivity declare himself to answer the action MAIN in the manifest. When 
the user installs the app the system creates the activity in the class loader it 
maps it to that action. When later the user press the icon, the system sends an 
Implicit intent with Main action and because he can answer it and it creates 
him.

Explicit Intent

So If we want to use the Explicit intent and start our own LoginActivity we first 
must create it. We have the short way: File->New->Activity->Empty Activity 
and give the Kotlin and the XML files a name and that’s it.  by doing this 
Android studio does allot for us: First it creates a new Kotlin class that extend 
AppCompatActivity and override the onCreate, then it creates a template xml 
file and inflate it in the previously overriden onCreate function. It also add the 
Activity to the Manifest XML file. So basically it is quite nice.

Please note that the default value this activity has for the exported attribute in 
the Manifest file is false, meaning this activity can be created only explicitly by 
mentioning of his name, He doesn’t have any <intent filter> and won’t be 
initiated by an ACTION like the MainActivity.

So to initiate it explicitly! create an Intent and use the context’s startActivity() 
function:

Passing Data 
what about the name and other information it needs? 
Since we don’t have a constructor we use the Intent to pass data upon creation. 
Each Intent contains a Bundle in his extra field. A Bundle is basically an 
HashMap where the key is a String and the value can be String, Int, Double, 
Float, array of them and any object that implements either the Java’s 



Serializable interface or its Android Parcelable implementation. We add this 
extras to the intent using it’s putExtra() function and when the system creates 
the new activity it saves this Intent as his property and we use  and the 
getExtra() with the same key:

In the calling Activity:

And in the newly created Activity:

And that’s it.

Tasks & Back Stack

Activities in the system are managed as an activity stack. When a new activity 
is started, it is placed on the top of the stack and becomes the running activity 
-- the previous activity always remains below it in the stack, and will not come 
to the foreground again until the new activity exits.

Your Activity is placed on top of your Task. By pressing the back button you kill 
this activity (like calling finish() from within the activity) and pops it from your 
back stack. By pressing the home button you take all of your Activity’s Task and 
put them all in the background (after a while the OS will kill them if you won’t 
return to them) and you can bring the task to the front along with all go the 
activities in it.

One thing you must understand regarding the Activity task is that each intent is 
creating a new activity instance. If, for example, from activity A you open B and 
then A again a new instance of activity A will be created. If you want to bring 
and existing Activity instance forward you need to change the Activity’s 
launchMode attribute in this the Manifest file from standard to: singleTop - 
meaning if the activity already present in the top of the stack (it is in the front) 
it won’t be recreated, singleTask - the system creates a new task just for the 



activity but if an there is already an instance of that activity somewhere in that 
task the system bring him forward and routes the intent to it. Because it is not 
created, the already existing instance still holds the old intent in its Intent 
property. If you want to update this field with the new Intent, you need to 
override the onNewIntent(intent: Intent) function. And the last one 
singleInstance which is the same as before except that the system doesn’t 
launch any other activities into the new task created for that activity (in case 
we wasn’t already present).

For further reading and some nice drawings:
https://developer.android.com/guide/components/activities/tasks-and-back-
stack

Implicit Intent

Now let’s say we want to open an address on a Map, send an email, dial a 
number, open a browser to a specific site, take a photo, record a video or any 
other action which we want to preform but don’t really care who will perform 
it. For this we have the Implicit Intent. In the Implicit Intent we set the Action 
String(it can be either one of the system fixed actions or our own custom one if 
you want  - not common) and according to all of the installed d components 
and their declared abilities - declared with <intent-filter>  - will be populated 
for the user to choose from. Please note that when using the Action string we 
usually set the extra data with the setData(uri) function. This functions 
accepts a URI that corresponds with the Action. For example when using 
ACTION_DIAL or ACTION_CALL the data is a phone number URI (starts with 
tel:):

Run the code. A Dialer with the phone number appears. Nice. 
Try changing the ACTION_DIAL to ACTION_CALL. What happens?
Yes, the app crashed! this is because the later action try to actually preform the 
call while the former just showed a dialer and allowed the user to initiate the 
call (the first time the system dialer ran it also asked for the permission).

Before moving forward to the permissions please read here a a list of common 
intent action and their corresponding intent filters - IMPORTANT



https://developer.android.com/guide/components/intents-common

Permissions

Runtime vs install time permissions 

First we must understand that before android 6.0 (marshmallow - api version 
23) all permission were install time, meaning that all we had to do is to add the 
required permission to the Manifest file like this:

Toady we still need to do it, but for some permissions this is not enough.

In the old way, when the user installed the app he was given two options either 
to install the app and accept all the permissions without the ability to accept 
one and deny the other, to revoke them at a later time or even to understand 
exactly when they are using them or simply not installing the app.

Today for some permissions this is still the case, these permissions are mostly 
what I call background use permission (like getting boot and bluetooth or wifi 
connections that happen usually when we don’t have UI present), and what 
Android defines as not dangerous - but normal  permission. you can find the 
full list of them here: https://stackoverflow.com/a/36937109/2826409 (normal 
means you should only declare in Manifest file even after Android 6 and 
dangerous is what we are going to discuss here). 

But for the most common permissions like calling, location, recording, reading 
contacts, and more.  We must switch to the Runtime permission mechanism 
and beside writing them in the  Manifest like before we must also present a Pop 
up window at runtime and specifically ask for them, just like in the iOS model - 
meaning we have to specifically  ask for them when we need them and the user 
must grant us each requested permission. He can later revoke his approval and 
he can allow one while denying the other. A good practice is to ask for the 
permission only when we need it.

And this is how we do it:
First let’s move the call execution to a separate function.



Now as a part of the new Launcher API that will be discussed later on we need 
to create the Permission request Launcher with the basic RequestPermission or 
RequestMultiplePermission Contract and provide a callback which upon 
approval will initiate the call:

When the user presses the call button we check if we already got the 
permission and if not we initiate the previously created launcher supplying it 
with the permission it needs to ask for. The system remembers the user 
approval but he can always revoke it and that is why before preforming the 
operation we must always check if we have the permission.
(please note that we use the AppCompat functions in order to support Android 
version earlier the 6.0)

Please note: before asking for the permission Android encourage you to check 
whether you should show A UI explaining why you need this permission. You 
can check with the system whether you need to show the rational with the 
shouldShowRequestPermissionRationale() function if it returns true show a 
dialog explains why you need it if not just go ahead and ask for it. 
shouldShowRequestPermissionRationale method returns false only if the user 
selected Never ask again or device policy prohibits the app from having that 
permission



●

●

●

●

Activity LifeCycle

An activity has essentially four states:
If an activity in the foreground of the screen (at the top of the stack), it 
is active or running.
If an activity has lost focus but is still visible (that is, a new non-full-
sized window has a focus and it it placed on top of your activity), it is 
paused. A paused activity is completely alive (it maintains all state 
and member information and remains attached to the window 
manager), but can’t receive interactions from the user.
If an activity is completely obscured visually by another activity, it is 
stopped. It still retains all state and member information, however, it is 
no longer visible to the user so its window is hidden and it will often be 
killed by the system when memory is needed elsewhere.
If an activity is paused or stopped, the system can drop the activity 
from memory by either asking it to finish, or simply killing its process. 
When it is displayed again to the user, it must be completely restarted 
and restored to its previous state.

The following diagram from the Android Developers shows the important state 
paths of an Activity. The square rectangles represent callback methods you can 
implement to perform operations when the Activity moves between states. The 
colored ovals are major states the Activity can be in.



●

●

●

(Photo from the Android Developers 
https://developer.android.com/guide/components/activities/activity-lifecycle)

There are three key loops you may be interested in monitoring within your 
activity:

The entire lifetime of an activity happens between the first call to 
onCreate(Bundle) through to a single final call to onDestroy(). 
The visible lifetime of an activity happens between a call to onStart() 
until a corresponding call to onStop(). During this time the user can 
see the activity on-screen, though it may not be in the foreground and 
interacting with the user. Between these two methods you can 
maintain resources that are needed to show the activity to the user.
The foreground lifetime of an activity happens between a call to 



●

●

●

onResume() until a corresponding call to onPause(). During this time 
the activity is in front of all other activities and interacting with the 
user. An activity can frequently go between the resumed and paused 
states. For example when a dialog indicating a new message arrived, a 
call received, or any other window that is in the foreground even if it is 
not fully hides out activity.

In other words: When another window hide even a part of our activity the 
function onPause is called  - This function is the best place to save user info to 
persistent storage. 
Note: When overriding each function it is very important to call super first.

Lets examine a situation where we move from activity A to activity B what 
do think the order of events should be? Think about it.

The key is to remember that while onPause is called on the first lost of 
foreground, onStop will only get called when our views are no longer visible, 
and that will happen only when activity B has the foreground. This is why the 
order of events will be:
A - onPause()
B - onCreate()
B - onStart()
B - onResume()
A - onStop()

This is also a good reason to save the data on the onPause  - if we need it in 
one of the new activity lifecycle events.

Persistent storage

As we have seen, when the android system calls the onDestroy() function all 
the app memory is deallocated and its resources are freed. So if we need to 
save some information across the user sessions we can use the lifecycle events 
to persist data across sessions. Android provides several options for you to 
save and persist your application data. The solution you choose depends on 
your specific needs:

Shared Preferences - Store private primitive data in key-value pairs. 
As its name suggest this is mainly useful in saving simple user 
preferences like if it is the first run our not, whether he muted the 
music, whether he want green or blue background color, his already 
typed e-mail in an edit text and other basic user user information.
Internal Storage - Store private data on the device memory, this 
storage is designed to be the app “sandbox”,  its private to your app 
and will be deleted when the user uninstall your app. It is not limited in 
size but the user can clear it from the settings. The shared 



●

●

●

●

preferences mentioned above are saved here as well as the ROOM 
DATABASE we will learn later on, but we can also write to this area 
directly using Java’s streams.
External Storage - Store public data on the shared external storage 
this information can be shared with other apps and can be saved even 
after your app is deleted. The External storage called “external” 
because you can share it with others, it is not external to the device 
but to the app. It is divided to two sections: The first is for use by our 
app. Like said it can be shared with others. It will be deleted when the 
user uninstall the app and writing to it doesn’t requires permissions. 
The second is the external shared by all apps, writing and reading 
from it requires permissions and data saved there will not be deleted 
when the user uninstall our app.

shared preference 
The SharedPreferences class provides you the easiest way of saving data to the 
device memory, the data will be saved while you app is installed on the device. 
We save all the information with the key-value bundle(hash Table) we have seen 
before - but with less options - only java primitives, String and a set of Strings. 

To get a SharedPreferences object for your application, use one of two 
methods:

getSharedPreferences() - Use this if you need multiple preferences 
files identified by name, which you specify with the first parameter 
(use a constant). Use this method to get a preference file  to be used 
across all activities, meaning a file that can be accessed from 
anywhere in your app. 
getPreferences() - Use this if you need only one preferences file for 
your Activity. Because this will be the only preferences file for your 
Activity, you don't need to supply a name. 

Here is an example of using the first option in the onPause lifecycle event



Please note that writing to the file system can be either synchronous or a-
synchronous. If you use the apply() function on the editor the writing is done 
later on but if you use the commit() function the system holds everything and 
writes the data to the filesystem now.

When we want to read data from the shared preferences we use the same file 
name and keys:

Note the MODE_PRIVATE flag which is our only option - the file is only readable 
by our app - the other modes WORD_READABLE and WORLD_WRITABLE 
considered to be dangerous and as of API 17 are deprecated (when google 
moved to SELinux).


